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Evaporative capillary rise
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The capillary rise in vertically situated open microchannels can be severely limited by
liquid evaporation. Here we quantitatively study the rise dynamics using a combination
of experiment and theory. On evaluating the effects of the enhanced evaporation near the
solid-liquid-gas contact line on the mass transfer rate from liquid in a microchannel, we
set up a differential equation for the temporal evolution of rise height by considering
mass conservation of evaporating viscous liquid drawn against gravity via capillarity.
It is found that there exists an optimal channel width that maximizes the equilibrium
rise height under a given channel depth, unlike nonevaporative rise whose equilibrium
height monotonically increases with the reduction of channel width. Our work can lay a
foundation for understanding the evaporative capillary rise dynamics occurring in various
porous media of biological, natural, and artificial settings.

DOI: 10.1103/PhysRevFluids.7.L032001

The rise of a liquid against gravity through small voids of porous media is one of the clearest
manifestations of capillarity. The surface tension drives the flow by generating a pressure jump
across the liquid-gas interface, the Laplace pressure, which is inversely proportional to the void
size [1]. Water rises through a vertical glass tube of submillimetric diameter to a great distance
(∼10 cm) from a reservoir. But we mundanely observe water wet a sheet of paper only a few
centimeters above the reservoir although the pore size of paper is far smaller than the usual tube
diameter. It is because the capillary flow is limited by evaporation of water from the pores open
to the atmosphere. Although such evaporation-limited flows are frequently observed or utilized in
heat pipes [2], desalination [3], evaporation-assisted pumping [4], hygroscopic actuation [5], and
nanoparticle assembly [6], the understanding of capillary rise dynamics undergoing evaporation is
still far from complete. The rise height evolutions within porous media including metallic weaves [7]
and knitted fabrics [8] were experimentally measured to be severely affected by evaporation. Such
rise dynamics in porous media considering capillarity, gravity, and evaporation were theoretically
analyzed by assuming evaporative flux values from the wet porous surface [9,10]. It was hard to
obtain satisfactory agreements of theoretical and experimental results in the evaporative capillary
rise dynamics, mainly because of insufficient knowledge of the evaporative flux from the wet pores.
Here we study the capillary rise dynamics affected by evaporation through adopting a simple
but fundamental model system where the evaporative flux can be both accurately measured and
theoretically analyzed. The model system consists of vertical open hydrophilic channels as shown
in Figs. 1(a) and 1(b).

Incorporating the effects of evaporation in the rise dynamics is by no means simple within
microchannels because the evaporative flux per unit interfacial area depends on the distance from
the liquid-gas-solid three phase contact line rather than being a constant [11]. Thus, we begin with
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FIG. 1. (a) An open channel on a Si wafer, 144 µm wide and 94 µm deep. (b) The cross sections of a
liquid column rising through a vertical open channel. (c) Evaporation of a liquid drop on a flat solid surface.
(d) A wedge-shaped meniscus undergoing evaporation. (e) Evaporation of a meniscus straddling the corners of
a rectangular channel of width w.

analyzing the evaporative flux from liquid meniscus taking into account the effects of the contact
line. Then we theoretically predict the rate of capillary rise in open channels and experimentally
corroborate them. We finally find the optimal channel width to exist that maximizes the equilibrium
rise height, where the capillary effects are balanced with those by gravity and evaporation.

Evaporation from an open capillary channel occurs in close proximity to three-phase contact
lines, which complicates the evaluation of the evaporative mass flux. For a liquid drop sitting on a
wettable solid, Fig. 1(c), it is now well established that evaporative mass transfer is enhanced near
the contact line, which is responsible for the so-called coffee ring stains of drying suspensions [12].
The evaporative volume flux per unit area from a liquid surface to the atmosphere, J ′′ is given by
Ficks law, J ′′ = −D∂c/∂n, where D is the diffusivity of vapor in the air and ∂c/∂n is the gradient of
vapor concentration c in the normal direction to the surface. Solving the steady-state concentration
equation, ∇2c = 0, in the surroundings of a wedge-shaped meniscus on a flat solid surface as shown
in Fig. 1(d), we find J ′′(x) = j0x−(π/2−θ )/(π−θ ) with x and θ respectively being the distance from the
contact line and the contact angle [12]. The coefficient, j0 depends on the vapor diffusivity and
density, the far-field and saturation concentrations [13–15]. The divergent nature of the flux near the
contact line as x → 0 is roughly attributed to geometric singularity where the sharp edge encounters
a wide open atmosphere [16]. Then we expect similar singularity for a meniscus straddling the
corners of channels as shown in Fig. 1(e), which leads us to write J ′′ ∼ x−n with 0 < n < 1. Here
∼ signifies “is scaled as.”

The evaporative volume flux per unit length of channel of width w is estimated as J ′ ≈
2

∫ w/2
0 J ′′(x)dx, where the evaporation near the contact line (x → 0) is assumed to dominate over

that in the center of channels of submillimetric width. When the width of channel exceeds ∼10 mm,
evaporation from bulk region dominates over the contact line effect, so that J ′′ is almost constant
or J ′ is proportional to w (Supplementary Material A [17]). We thus anticipate J ′ = J0w

(1−n) for
narrow channels where significant capillary rise can be observed. Complicated geometry involving
channel corners and curved meniscus, which hardly allows analytical solutions, led us to numeri-
cally solve the Laplace equation for c, ∇2c = 0, in the atmosphere and find J ′′ while varying the
contact angle and the channel width. As delineated in Supplementary Material A, we find that J0

and n are nearly constant regardless of the contact angle.
To corroborate the theoretical prediction, we measured the evaporative flux of ethanol from

an open channel using an experimental setup illustrated in Fig. 2(a). Ten identical rectangular
microchannels of 20-mm length were formed in parallel on a Si wafer using the deep reactive
ion etching process. The ends of the channels were connected to a separate liquid reservoir through
flexible tubes. The Si surface is highly wettable by ethanol, and thus the equilibrium contact angle, θe

is nearly zero. As ethanol evaporated from the initially filled channels, the liquid was continuously
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FIG. 2. (a) Experimental setup to measure the evaporative flux from the interface of ethanol, which fills 10
identical horizontal channels of the width w. The liquid is supplied from the reservoir to the channels through
flexible tubes, which are coupled with the channels by the rigid tubes and through-holes of the end walls
made of PDMS and glass. (b) Schematics of a single channel from which liquid evaporates. (c) Comparison of
experimentally measured (filled symbols) and numerically computed (empty symbols) values of evaporation
rate per unit length, J ′ versus the channel width for different contact angles. The solid line corresponds to
J ′ = J0w

(1−n), as determined by the least square method with the coefficient of determination R2 = 0.9712.
Each experimental data point corresponds to the average of five measurements.

fed from the reservoir whose liquid level was initially set to match the height of the channels as
shown in Fig. 2(b). The weight decrease of the reservoir was measured by an electronic balance
(Mettler Toledo ML204T), which allowed us to obtain the evaporative flux. The channel width
ranged from 50 to 500 µm. The temperature and relative humidity of the surrounding air were
respectively maintained at 20 ◦C and 20%.

The measured rate of mass decrement was divided by the ethanol density (789 kg m−3) and the
entire length of channel exposed to air (200 mm total for 10 channels) to find the evaporation rate
of ethanol per unit length, J ′ versus channel width, as shown in Fig. 2(c). The data agree with the
numerically computed J ′ for different contact angles (numerical details in Supplementary Material
A [17]), which allows us to write J ′ = J0w

(1−n) with n = 0.62 and J0 = 4.1 × 10−8 m1+n s−1. The
positive value of n signifies that J ′ does not decrease linearly with the reduction of channel width
(as in large channels with constant J ′′) but rather depends weakly on w owing to the enhanced
evaporation near the contact line.

Based on the quantitative measurement of evaporation flux from filled horizontal open mi-
crochannels, we now model the dynamics of evaporative capillary rise of a wetting liquid through
an initially dry vertical open channel as shown in Fig. 1(a). The liquid rise velocity is determined
by the mass conservation considering the upward flow affected by capillarity, gravity and viscosity,
and the loss due to evaporation. For a control volume involving the advancing liquid-air interface, a
green cuboid in Fig. 1(b), we write

A(z)u(z) − (h − z)J ′ = A(h)ḣ, (1)

where A(z) and u(z) are respectively the cross-sectional area of the liquid column and the average
velocity at the elevation z from the reservoir and ḣ = dh/dt . In the following, we obtain h,
the capillary rise height, as a function of time t by solving Eq. (1). Here we considered the
evaporative flux from the side area only while neglecting that from the top surface, whose extension
from the bulk is discussed in detail below.

The cross-sectional area of liquid column at z is determined by the meniscus curvature κ (z) as
shown in Fig. 1(b): A(z) = wd − (w/2)2[(π/2 − θ )/ cos2 θ − tan θ ], where d is the channel depth.
The angle of the pinned meniscus at the channel edges, θ , is given by θ (z) = cos−1(wκ/2) < π/2.
We assume a fully developed flow because Re(d/h) � 1 except for the extremely early stages,
where the Reynolds number Re = Ud/ν with U and ν respectively being the characteristic flow
velocity and the kinematic viscosity. Then the pressure in the liquid column decreases linearly
from the atmospheric pressure pa at z = 0 to pa − γ κt at z = h(t ), where γ is the surface tension
coefficient of liquid.
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FIG. 3. (a) Schematics of top menisci during and after capillary rise in an open channel. The radii of
curvature in the x-y and y-z plane are denoted as R and r, respectively. (b) Side view image of a meniscus
during rise in a partially wettable channel, where a dotted line indicates a convex (in the y-z plane) meniscus
with the advancing contact angle of θa = 25◦. (c) Side and front view images of a meniscus after the equilibrium
rise height has been reached. (d) Radius of curvature of the convex meniscus. The transparent PDMS channel
has the width and depth of w = 200 µm and d = 100 µm.

Near the top of the rising liquid column, the liquid can no longer be pinned at the channel edges
and its interface touches the channel bottom at the advancing contact angle of θa, as illustrated in
Fig. 3. While the meniscus is concave in the x-y plane, it is convex in the y-z plane. To clearly
visualize the top meniscus, we carried out additional experiments using an open channel made of
transparent polydimethylsiloxane (PDMS), and the result is shown in Fig. 3(b). The equilibrium
contact angle of ethanol on PDMS is 20◦, and thus the advancing contact angle θa on PDMS is
also greater than on the highly wettable Si surface. As drawn in Fig. 3(d), the radius of curvature
r of the convex curve in the y-z plane is found as a function of the channel depth d and θa: r =
d/(1 − cos θa). On highly wettable surfaces, θa is fairly small, so that r 	 d. For deep channels
(d � w/2), r is much greater than the radius of curvature in the x-y plane. The experimental image
in Fig. 3(b) using the partially wettable surface shows θa = 25◦ and the corresponding r = 1 mm,
which is much greater than the half channel width, w/2 = 0.1 mm. For highly wettable surfaces like
Si, θa is even smaller, leading to r 	 w/2. Therefore, the additional curvature in the y-z plane has
negligible effects on the mean curvature of the top surface (κt 	 r−1) on highly wettable channels.
Furthermore, the additional rise height (r sin θa) and area (wrθa) due to the convex meniscus are far
smaller than the equilibrium rise height (he) and side area of liquid column (whe) in Si channels.

After the bulk liquid column reached its equilibrium height, the channel corners were additionally
wetted by the liquid, as shown in Fig. 3(c). This corner meniscus forms because the sharp corners
with a high surface energy can locally draw liquid upward. In our experiments with Si channels,
the corner menisci of the ethanol were observed to extend up to approximately 1 mm, which
was insignificant compared to the typical equilibrium bulk rise height ranging from 10 to 50 mm.
When the channels were shallow such that d < w/2, the similar liquid wedges were experimentally
found to rise along the channel edges from the early stages, dominating over the bulk rise. The
understanding of the corner flows of wedges needs a separate theoretical consideration [18] and is
not treated here. We only deal with deep channels in this work.

For deep channels, as the pressure distribution in the liquid follows p(z) = pa − γ κtz/h, the
curvature of the meniscus at z is κ (z) = κtz/h, implying that the curvature of the interface open to
the atmospheres increases with the height, as depicted in Fig. 1(b). To describe the average velocity
of the viscous flow through a conduit of varying cross-sectional area, we employ Darcys law [19,20]:

u = − k

μ

∂ (p + ρgz)

∂z
, (2)

where k is the permeability, ρ the liquid density, μ the liquid viscosity, and g the gravitational
acceleration. Integrating Eq. (2) with respect to z from 0 to h, we get μ

∫ h
0 (u/k)dz = γ κt − ρgh.
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FIG. 4. Experimental (symbols) and theoretical (lines) results of the rise height of ethanol versus time, in
vertical closed and open channels with (w, d) = (38, 42) µm and (76, 88) µm. A broken line is a theoretical
result assuming no evaporation. Solid lines are theoretical results with the evaporative flux over the side open
area given by J ′ = J0w

0.38.

Using Eq. (1), we get a nonlinear differential equation for h:

ḣ = 1

μA(h)I1(h)
{γ κt − ρgh − μJ ′[hI1(h) − I2(h)]}, (3)

where I1(h) = ∫ h
0 A−1(z)k−1(z)dz and I2(h) = ∫ h

0 zA−1(z)k−1(z)dz. As the permeability is propor-
tional to the cross-sectional area of flow, we write k(z) = k(0)A(z)/A(0), where A(0) = wd. The
permeability of an open rectangular microchannel [21] with θ = π/2 at z = 0 is given by k(0) =
(w2/12){1 − ∑∞

m=odd 96w[tanh(mπd/w)]/(m5π5d)}.
We numerically integrate Eq. (3) to compute the temporal evolution of the rise height of liquid.

Figure 4 shows the computational and experimental results of capillary rise dynamics in channels
with (w, d) = (76, 88) µm and (38, 42) µm. We first see that the liquid rise in the former channel
with one side open (green circles) is severely limited as compared to the rise in the channel with
all the four sides closed (green squares). The broken line corresponds to the computational result
assuming no evaporative flux, J ′ = 0. Our model (solid line) considering the evaporative flux, J ′ =
J0w

0.38, agrees with the experimental data for the open channel. In particular, it correctly captures
the early saturating behavior of the rise height caused by evaporation.

We note in Fig. 4 that the final rise height of the wider open channel (green circles) is greater
than that of the narrower open channel (red circles) unlike nonevaporative capillary rise where
narrower ones always result in greater equilibrium rise height. It is because the enhanced evaporative
mass loss offsets the strong capillary effects in narrower channels. Below we further quantify the
evaporation effects on capillary rise in the context of the equilibrium rise height.

The equilibrium rise height, he, is obtained by letting ḣ = 0 in Eq. (3) once the width and depth
of a rectangular channel are given. Figure 5(a) displays the contour map of he as both w and d range
from 0 to 0.5 mm. We plot the theoretically obtained he as a function of the channel depth d at
fixed widths in Fig. 5(b). It is seen that he increases steeply with the increase of d when d is small,
but it plateaus when d gets large. In Supplementary Material B [17], we show he = γ [ 2 cos θe/w −
(1 − cos θe)/d ]/(ρg), where θe is the equilibrium contact angle, without evaporation. This reduces
to he = 2γ /(ρgw) when θe = 0, which corresponds to the asymptotic dashed lines in Fig. 5(b). In
the small d regime, the evaporative loss from the open surface can be compensated more effectively
as d increases, resulting in the steep increase of he with the increase of d. When the channel is
sufficiently deep, the evaporative loss is insignificant compared with the amount of liquid pumped
upward by capillarity.
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FIG. 5. (a) The contour map of the equilibrium capillary rise height of ethanol, he, in open rectangular
channels. (b) he versus channel depth, d, for different channel widths, w. (c) he versus w for different d.
(d) Dimensionless height he/hJ versus w/d for different values of μJ0/(γ dn). (e) he of open rectangular
channels with different depth-to-width ratios. (f) he versus channel width for different J0. All the results
are from numerical computations except for circular symbols in (c) and (d) which are from experimental
measurements.

In Fig. 5(c) that plots he versus w for fixed values of d, we find an optimal channel width to
exist that maximizes he at given d. When w is smaller than the optimal width, he increases with w

because the ratio of the evaporative flux (∼hw1−n) to the liquid volume (∼dwh), ∼w−n/d, is higher
for a narrower channel. However, for w greater than the optimal width, he decreases with w due to
combined effects of the excessive evaporative loss and the decreased capillary effects. Therefore,
the evaporative effects are the most pronounced in the small w region where he increases with w

rather than decreasing.
We note that Fig. 5(c) can be replotted for a dimensionless rise height, as shown in Fig. 5(d).

Because he is a function of w, d, ρg, σ , μ, and J0, dimensional analysis reveals that the dimen-
sionless height he/hJ , with the Jurin height hJ = 2γ /(ρgw), depends on the two dimensionless
variables: w/d and μJ0/(γ dn). We see in Fig. 5(d) that he/hJ is indeed determined by w/d when
a value of μJ0/(γ dn) is given. Although this dimensionless plot elegantly displays the complete
functional dependence of the equilibrium rise height, it is hard to find the optimal channel dimension
to maximize the rise height.

Figure 5(e) plots he for channels with w/d = 0.5, 1, and 2, revealing that the optimal width to
maximize he for a given aspect ratio is greater for a shallower channel. Namely, the optimal width
is 93, 116, and 160 µm for w/d = 0.5, 1, and 2, respectively. This is because evaporation effects are
more significant for shallower channels (larger w/d), and thus the width range is broadened, where
the rise height increases with w.

In addition to the channel dimensions, the strength of evaporation denoted as J0 plays an
important role in determining he. As the ethanol temperature varies from 10 ◦C to 30 ◦C, J0 was
numerically calculated to change from 2.3 × 10−8 to 7.1 × 10−8 m1.62 s−1 with the saturation
concentration cs assumed to follow the ideal gas behavior: cs = MPs/(RT ). Here M, Ps, and R are
the molecular weight, the saturation vapor pressure and the gas constant, respectively. Figure 5(f)
plots the theoretically predicted he for a channel with d = 100 µm as a function of the width at
different values of J0. We see that the maximum he for J0 = 2.3 × 10−8 m1.62 s−1 is 1.45 times
greater than that for J0 = 7.1 × 10−8 m1.62 s−1. However, the effects of J0 on he become less
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significant for excessively large w because the small rise height due to reduced capillary effect
and enhanced gravitational force for large w limits the area where evaporation occurs. Overall, the
effects of evaporation are found to be important when the channel width and depth are smaller than
∼200 µm for ethanol.

In summary, we have investigated the capillary rise dynamics of an evaporative liquid in a
vertical open microchannel using a combination of experiment and theory. We have evaluated the
evaporation rate per channel length as a function of the channel width, to find that the rate depends
only weakly on the width owing to the enhanced evaporation near the solid-liquid-gas contact line.
We have derived a differential equation for the temporal evolution of the rise height, by incorporating
the quantified evaporation rate in the mass conservation equation while employing the concept of
permeability to account for the varying cross-sectional area of the liquid column. The experimental
measurement results of the capillary rise dynamics that are limited by evaporation have been shown
to be in good agreement with our theoretical prediction. A remarkable feature of the evaporative
capillary rise is that there exists an optimal channel width that maximizes the equilibrium rise height
once the channel depth is given, unlike nonevaporative rise whose equilibrium height monotonically
increases with reduction of channel width.

The theoretical model constructed here can lay a foundation for understanding the evaporative
capillary rise dynamics occurring in porous media including wet rocks, bricks, bread, and paper, as
well as simple open channels adopted in coolers of heating, ventilation, and air-conditioning equip-
ment [22]. Furthermore, the subtle dependence of the capillary rise distance on the combination of
depth and width of channel leads us to think about its physical implication on the design principles
of deep skin wrinkles of some animals. The water transported in the skin wrinkles of elephants has
been reported to help them cool their body [23], so that both wide water coverage of their skin and
effective evaporation are important. Desert lizards draw water from wet soil by using skin wrinkles
that act as capillary channels up to their mouths [24]. In this case, suppressing evaporation while
maximizing the flow rate would be a primary objective function. Our work can be a starting point to
elucidate such biological capillary channel designs as well as help us design optimal fluid networks
relying on both evaporation and capillarity.

This work was supported by the National Research Foundation of Korea (Grants No. 2018-
052541 and No. 2021-017476) via SNU IAMD.
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